Обоснование выбора схемотехнологии

При проектировании вычислительного устройства необходимо учесть ограничение в 500нс на задержку распространения сигнала и 500 мВт на потребляемую мощность. Так как предельное значение задержки довольно велико, то можно использовать микросхемы ТТЛ, однако КМОП технология позволяет обеспечить наименьшую потребляемую мощность и задержку распространения сигнала.

Схемы КМОП в 1963 изобрёл Фрэнк Вонлас (FrankWanlass) из компании FairchildSemiconductor, первые микросхемы по технологии КМОП были созданы в 1968. Долгое время КМОП рассматривалась как энергосберегающая, но медленная альтернатива ТТЛ, поэтому микросхемы КМОП нашли применение в электронных часах, калькуляторах и других устройствах с батарейным питанием, где энергопотребление было критичным.

К 1990 году с повышением степени интеграции микросхем встала проблема рассеивания энергии на элементах. В результате технология КМОП оказалась в выигрышном положении. Со временем были достигнуты скорость переключения и плотность монтажа недостижимые в технологиях, основанных на биполярных транзисторах.

Ранние КМОП-схемы были очень уязвимы к электростатическим разрядам. Сейчас эта проблема в основном решена, но при монтаже КМОП-микросхем рекомендуется принимать меры по снятию электрических зарядов.

Для изготовления затворов в КМОП-ячейках на ранних этапах применялся алюминий. Позже, в связи с появлением так называемой самосовмещённой технологии, которая предусматривала использование затвора не только как конструктивного элемента, но одновременно как маски при получении сток-истоковых областей, в качестве затвора стали применять поликристаллический кремний.

Характеристики и параметры входов и выходов цифровых микросхем определяются прежде всего технологией и схемотехникой их внутреннего строения. Но для разработчика цифровых устройств любая микросхема представляет собой всего лишь "черный ящик", внутренности которого знать не обязательно. Ему важно только четко представлять себе, как поведет себя та или иная микросхема в данном конкретном включении, будет ли она правильно выполнять требуемую от нее функцию.

Наибольшее распространение получили две технологии цифровых микросхем:

ТТЛ (TTL) и ТТЛШ (TTLS) - биполярная транзисторно-транзисторная логика и ТТЛ с диодами Шоттки;

КМОП (CMOS) - комплементарные транзисторы со структурой "металл-окисел-полупроводник"

Рис. 1 Входной и выходной каскады микросхем КМОП

Различаются они типами используемых транзисторов и схемотехническими решениями внутренних каскадов микросхем. Отметим также, что микросхемы КМОП потребляют значительно меньший ток от источника питания, чем такие же микросхемы ТТЛ (или ТТЛШ) - правда, только в статическом режиме или на небольших рабочих частотах. На рис. 1показан пример схемы входных и выходных каскадов микросхем, выполненных по технологии КМОП. Понятно, что точный учет всех эффектов в этих схемах, включающих в себя множество транзисторов, диодов и резисторов, крайне сложен, но обычно он просто не нужен разработчику цифровых схем.

На первом уровне представления (логическая модель) и на втором уровне представления (модель с временными задержками) о входах микросхем вообще ничего знать не нужно. Вход рассматривается как бесконечно большое сопротивление, никак не влияющее на подключенные к нему выходы. Правда, количество входов, подключенных к одному выходу, влияет на задержку распространения сигнала, но, как правило, незначительно, поэтому это влияние учитывается редко.

Даже на третьем уровне представления (электрическая модель) в большинстве случаев не нужно знать о внутреннем строении микросхемы, о схемотехнике входов. Достаточно считать, что при подаче на вход сигнала логического нуля из этого входа вытекает ток, не превышающий IIL, а при подаче сигнала логической единицы в этот вход втекает ток, не превышающий IIH. А для правильной логики работы микросхемы достаточно, чтобы уровень напряжения входного сигнала логического нуля был меньше UIL, а уровень напряжения входного сигнала логической единицы был больше UIH

Серии логических КМОП-микросхем зарубежного производства

На КМОП-транзисторах (CMOS):

- CMOS с питанием от 3 до 15В, 200 нс;

B - CMOS с питанием от 3 до 15В, 90 нс;

C - аналогична серии 4000B;

HC - Высокоскоростная CMOS, по скорости аналогична серии LS, 12 нс;

HCT - Высокоскоростная, совместимая по выходам с биполярными сериями;

AC - Улучшенная CMOS, скорость в целом между сериями S и F;

ACT - Улучшенная CMOS, совместимая по выходам с биполярными сериями;

AHC - Улучшенная высокоскоростная CMOS, втрое быстрее HC;

Перейти на страницу: 1 2 3

Похожые стьтьи по экономике

Микроконтроллеры MSP430
Микроконтроллеры семейства MSP430 - серия 16-ти разрядных микроконтроллеров фирмы Texas Instruments (www.ti.com). Американская фирма TI является мировым лидером по производству цифровых сигнальных про ...

Генератор синусоидальных модулированных колебаний
Невозможно назвать хотя бы одну отрасль экспериментальной, лечебной или профилактической медицины, которая могла бы рассчитывать даже на малый успех без применения электронной медицинск ...

Характеристика предприятия ООО РН - Информ
В настоящее время возрастает роль автоматизации технологических процессов как средство контроля и стабилизации технологических параметров, а так же обеспечение безопасной работы технолог ...

Разделы

© 2020 - www.frontinformatics.ru